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Abstract

Though Neural Radiance Fields (NeRF) can produce colorful
3D representations of the world by using a set of 2D images,
such ability becomes non-existent when only monochromatic
images are provided. Since color is necessary in represent-
ing the world, reproducing color from monochromatic radi-
ance fields becomes crucial. To achieve this goal, instead of
manipulating the monochromatic radiance fields directly, we
consider it as a representation-prediction task in the Lab color
space. By first constructing the luminance and density repre-
sentation using monochromatic images, our prediction stage
can recreate color representation on the basis of an image
colorization module. We then reproduce a colorful implicit
model through the representation of luminance, density, and
color. Extensive experiments have been conducted to vali-
date the effectiveness of our approaches. Our project page:
https://liquidammonia.github.io/color-nerf.

Introduction
Neural Radiance Fields (NeRF) (Mildenhall et al. 2020) is
able to create a colorful 3D representation of the world by
using a set of 2D images. Can this created implicit 3D model
still be colorful when only monochromatic images are avail-
able?

The answer is frustrating. The original design of NeRF is
unable to create a colorful appearance from monochrome,
and colorizing the monochromatic radiance fields using
external forces seems to be the only option. Coloriza-
tion is a classical problem being studied for more than a
decade (Cheng, Yang, and Sheng 2015; Ironi, Cohen-Or, and
Lischinski 2005; Levin, Lischinski, and Weiss 2004; Luan
et al. 2007), with various applications in artistic creation,
and legacy photo restoration. During its evolution on im-
ages/videos, there are two common standards that a good
colorization scheme should follow: 1) plausibility, which
requires the colorized results to demonstrate visually rea-
sonable appearance (Iizuka, Simo-Serra, and Ishikawa 2016;
Larsson, Maire, and Shakhnarovich 2016); 2) vividness,
which ensures the high level of saturation for colorized re-
sults (Weng et al. 2022; Wu et al. 2021; Zhang, Isola, and
Efros 2016; Zhang et al. 2017). These standards should be
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Figure 1: With multi-view monochromatic images (a) as in-
puts, (b-e) are three novel views synthesised by NeRF mod-
els. Existing color editing NeRFs (b) ARF (Zhang et al.
2022) and (c) CLIP-NeRF (Wang et al. 2022a) could not
guarantee pixel-wise color adherence, while using “colorize-
then-fuse” solution (d) CT2 (Weng et al. 2022)+NeRF) suf-
fers from color inconsistency across different views. The
proposed ColorNeRF (e) can generate a more plausible and
vivid colorized NeRF compared to previous models.

applied to colorizing monochromatic radiance fields as
well, but how to achieve this remains an open problem.

Directly manipulating radiance fields seems to be a
straightforward way to achieve this goal of colorization. One
solution is to regard the color as a kind of “style” and then
transfer the style into radiance fields (Zhang et al. 2022).
However, as displayed in Fig. 1(b), since such a strategy can-
not guarantee pixel-wise color adherence, the color can only
distribute on radiance fields irregularly, thus violating the
plausibility standard. A different approach involves manip-
ulating the color attributes in radiance fields directly (Tojo
and Umetani 2022; Wang et al. 2022a). This technique is in-
tended for replacing colors by identifying the current color
attributes and replacing them with new ones. However, it is
not applicable to monochromatic radiance fields where there
are no existing color attributes. As displayed in Fig. 1(c), the



inability to perceive color palettes when using “direct ma-
nipulating” approaches (Wang et al. 2022a) on monochro-
matic radiance fields leaves rendered results below the vivid-
ness standard.

Another alternative is the “colorize-then-fuse” solution,
i.e, first colorize monochromatic images and then fuse them
for radiance field construction. However, without consid-
ering the view-dependent correlation, the examples col-
orized by image-based approaches cannot guarantee color
consistency in the constructed radiance fields, as displayed
in Fig. 1(d), which also obviously violates the plausibil-
ity standard. However, despite the unsatisfactory plausibility
across views, this paradigm indeed achieves better vividness
than directly manipulating radiance fields, compared with
Fig. 1(b) and Fig. 1(c). This is partly because of the opera-
tion on complementing the missing color channels (Huang,
Zhao, and Liao 2022; Zhang, Isola, and Efros 2016; Wu et al.
2021) in the CIE Lab color space as a channel-prediction
task (Iizuka, Simo-Serra, and Ishikawa 2016; Weng et al.
2022; Zhang, Isola, and Efros 2016), i.e., inferring the miss-
ing a and b channels from the given L channel (monochro-
matic image). As opposed to producing three-channel RGB
outputs, such an operation allows the neural network to fo-
cus only on the generation of two color channels (Anwar
et al. 2020), which reduces computational costs and uncer-
tainty during colorization.

Based on the above observations, in this paper, we
propose ColorNeRF, to colorize monochromatic radiance
fields by predicting the missing representation of color chan-
nels. As displayed in Fig. 2, ColorNeRF first builds lumi-
nance and density radiance fields by solely using monochro-
matic images and then infers the color representation for
channel a and b. Instead of building the radiance fields via
directly altering in the image domain like the “colorize-
then-fuse” paradigm, we inject color knowledge into the
predicted representations from an off-the-shelf colorization
module (Weng et al. 2022) based on a newly proposed
query-based colorization strategy. By gradually imposing
changes on the predicted representation, our model can fi-
nally maintain color consistency for better plausibility. A
histogram-guided purification module and a classification-
based color injection module are further proposed to better
address color plausibility and enhance the vividness.

To sum up, ColorNeRF is the first approach that
achieves rendering plausible and vivid radiance fields from
monochromatic images via the following contributions:

• a representation prediction paradigm tailored to recreate
colors for monochromatic radiance fields;

• a query-based colorization strategy and a histogram-
guided purification module for maintaining strong plau-
sibility, and

• a classification-based color injection module for achiev-
ing high vividness in colorized results.

Extensive experiments on LLFF dataset (Mildenhall et al.
2019) and our own captured scenes demonstrate that Col-
orNeRF achieves state-of-the-art results with better plausi-
bility and vividness in quantitative and qualitative measure-
ments. We also show the colorful NeRF generated from real

monochromatic inputs, e.g., monochrome photography and
classical movies.

Related work
Image colorization. Several methods have been proposed
to address the plausibility and vividness in colorization. Au-
tomatic colorization methods use a single monochromatic
image as the input. It is a highly ill-posed task while requires
estimating two missing color channels from one monochor-
matic channel. Early approaches rely on the local freature
extraction (Guadarrama et al. 2017; Larsson, Maire, and
Shakhnarovich 2016; Zhang, Isola, and Efros 2016). Later,
better colorization can be achieved via the generative mod-
els (Cao et al. 2017; Vitoria, Raad, and Ballester 2020). Sev-
eral other studies (Geonung et al. 2022; Wu et al. 2021; Zhao
et al. 2020) have focused on utilizing external prior knowl-
edge from other low-level vision tasks. Other works focus
on how to inject multi-modal user-guided features to con-
duct conditional colorization. For example, stroke-based ap-
proaches (Yun et al. 2023; Zhang, Isola, and Efros 2016;
Zhang et al. 2017) and text-based methods (Chang et al.
2022; Chen et al. 2018; Huang, Zhao, and Liao 2022) are
proposed to adopt necessary attention features. In terms
of image/video-based colorization, the above methods have
pushed the boundaries for plausibility and vividness, but still
cannot achieve these two goals for monochromatic radiance
fields used to implicitly represent 3D space, which we hope
to achieve in this paper.

Manipulating colors for NeRF. NeRF (Mildenhall et al.
2020) is poised to be an effective paradigm to implicitly rep-
resent the 3D world. The recent advances show that radi-
ance fields can be robustly constructed when noise (Pearl,
Treibitz, and Korman 2022), occlusion (Martin-Brualla et al.
2021), or even blurring phenomena (Ma et al. 2022) are en-
countered. However, the exploration for constructing plau-
sible and vivid radiance fields from monochromatic images
is still left unresolved. A number of existing approaches can
change the color rendered from NeRF. For example, the ap-
proaches (Zhang et al. 2022; Wang et al. 2022b)) for styl-
ization can conduct the change by transferring the styles
from external sources to radiance fields. However, the trans-
ferred styles actually distribute in radiance fields irregularly.
Recently, several methods are proposed to directly edit the
color of radiance fields by extracting the color palette (Tojo
and Umetani 2022; Gong et al. 2023; Kuang et al. 2022)
or from external models (Fan et al. 2022; Kobayashi, Mat-
sumoto, and Sitzmann 2022; Niemeyer and Geiger 2021;
Wang et al. 2022a; Liu et al. 2021). However, as they rely on
established color attributes to distinguish regions to be col-
orized, they cannot colorize monochromatic radiance fields,
which is another issue to be addressed in this paper.

Preliminaries
Colorization for images. The image colorization task is
usually conducted in the CIE Lab space (Iizuka, Simo-Serra,
and Ishikawa 2016; Weng et al. 2022; Zhang, Isola, and
Efros 2016) instead of the RGB space, as this color space
is device-independent and robust in approximating human
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Figure 2: The overall pipeline of the proposed ColorNeRF. With rays from multiple viewpoints as inputs, luminance and den-
sity representation is first constructed with supervision over the ground truth monochromatic images, yielding monochromatic
image patches L̂P . Then we predict color with an off-the-shelf 2D colorization module F(·), followed by our histogram-guided
purification module to enhance plausibility. Lastly, we inject the color information in ZP to the color representation with our
classification-based color injection module. The final output ĈP is calculated by the concatenation of L̂P and ŶP , followed
by the Lab to RGB conversion.

vision. The L channel represents perceptual lightness and ab
represents human perceptual colors. When Lab color space
is employed, the monochromatic image can be considered as
an image with a single L channel. Thus, the colorization of
a monochromatic image can be regarded as transferring the
prediction of missing color represented by information in a
and b channels, when only L channel is provided, formulated
as follows:

Clab = concat{L,F(L)}, (1)
where F(·) denotes the estimation of a and b channels and
Clab is the estimated results with complete three channels in
the Lab color space.

Neural radiance fields. NeRF (Mildenhall et al. 2020)
utilizes multilayer perceptron (MLP) to implicitly represent
3D scene. Taking a point’s 3D coordinate x ∈ R3 as in-
put, MLP Θσ(·) first yields density σ and points encoding
w. MLP ΘC(·, ·) subsequently takes w and view direction
d ∈ [−π, π]2 as inputs and predicts c ∈ R3, denoting the
RGB color, summarized as:

(w, σ) = Θσ(x), (2)
c = ΘC(w,d). (3)

In the volume rendering stage, given a camera ray r(t) =
o + td, where t ∈ [tnear, tfar] is the depth, o is the camera
origin; NeRF calculates the perceptual color C(r) of the ray
using quadrature of M sampled points:

C(r) =

M∑
m=1

T (m)(1− exp(−σmδm))cm, (4)

where T (m) = exp(−
∑m−1

l=1 σlδl) and δm = tm+1 − tm
are intervals of adjacent sampled points, (cm, σm) are gener-
ated by neural networks. NeRF has a “one-scene-per-model”

property, i.e, a NeRF model is solely optimized on a collec-
tion of images and their poses from one scene using photo-
metric re-rendering loss:

Lphotometric =
∑
r∈R

||C(r)− Ĉ(r)||22, (5)

where R is the set of sampled rays, C(r) and Ĉ(r) are the
ground truth and predicted values, respectively.

Given RGB images, NeRF is capable of converting
image-level details into a colorful implicit 3D representa-
tion by using Eq. (5), while it cannot create color attributes
if they are not available from input images. Thus, feeding
monochromatic images widely observed in our lives (e.g.,
monochrome photography and classical movies) to NeRF
can only lead to monochromatic radiance fields. Colorizing
such monochromatic radiance fields with high plausibility
and vividness is the problem to be solved next.

Proposed method
The overall pipeline of ColorNeRF is summarized in Fig. 2.
According to the analysis in Fig. 1, we follow the paradigm
established in image colorization (Iizuka, Simo-Serra, and
Ishikawa 2016; Weng et al. 2022; Zhang, Isola, and Efros
2016) by first constructing a luminance and density repre-
sentation with monochromatic images and then predicting
the missing representation of a and b channels. After vol-
ume rendering, monochromatic image patches are first sent
to the colorization module, the results are gradually injected
using a query-based colorization strategy, followed by our
histogram-guided purification module to remove outliers.
The purified image patches are used to supervise the predic-
tion of color representation with a proposed classification-
based color injection module.
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Figure 3: Our query-based injection strategy could gener-
ate plausible results from inconsistent colors. (a) is the input
monochromatic image with different sampled patches (de-
noted as rectangles); (b) is the final output of our model with
consistent color; (c) are the results from CT2 (Weng et al.
2022), corresponding to image patches in (a).

We utilize patch sampling scheme similar to
GRAF (Schwarz et al. 2020) throughout model train-
ing. Specifically, in the training process, the K × K image
patch P(u, s) is defined by:

P(u, s)=

{
(sx+ u, sy + v)|x, y ∈ {−K

2
, ...,

K

2
− 1}

}
,

(6)
where u = (u, v) is the center of the image patch, s controls
the perception field of the sampled patch. The correspond-
ing 3D rays are determined by P(u, s). With this sampling
scheme, the patches from volume rendering become seman-
tically meaningful, and hence could be fed to an external
model for further processing.

Luminance and density representation
We first construct the representation for luminance and den-
sity, and then fix them during color representation predic-
tion. The luminance and density representation can be sim-
ply defined as:

l = ΘM(w,d), (7)

where l is the rendered monochromatic output, ΘM(·, ·) is
the mapping network in luminance and density representa-
tion. COLMAP (Schönberger and Frahm 2016; Schönberger
et al. 2016) is used for pose estimation during mapping de-
fined by Eq. (7). Due to that COLMAP’s proper functioning
requires monochromatic images, our setting does not affect
its performance. We first supervise the luminance and den-
sity representation using photometric loss similar to Eq. (5),

Lphotometric =
∑
p∈P

||LP(p)− L̂P(p)||22, (8)

where p = p(r) is the pixel corresponding to the ray r.

(a) (b)
Figure 4: Outliers from colorized image patches. For both
examples, the left is the reference image and the right is the
colorized image with outliers, marked by red rectangles.

Color representation prediction
With the luminance and density representation obtained
in Eq. (7), we aim at predicting the color representation via
the mapping network ΘZ(·, ·) below,

z = ΘZ(w,d), (9)

where z denotes the predicted representation for ab chan-
nels. The difficulty encountered by the mapping correlation
in Eq. (9) comes from the lack of color supervision dur-
ing representation construction. Thus, incorporating color
knowledge into predicted representation, while preserving
the plausibility and vividness of the results, is crucial.

Query-based colorization. Our approach could utilize
color information from different off-the-shelf colorization
models. Without losing generality, we obtain color knowl-
edge from a state-of-the-art automatic colorization work
CT2 (Weng et al. 2022). For maintaining higher plausibility,
rather than colorizing images ahead of representation pre-
diction (i.e, the “colorize-then-fuse” paradigm), where each
image pixel in a camera pose is assigned with a fixed color
before optimization, we propose a query-based colorization
strategy by first querying the colorization module with the
rendered luminance samples and then dynamically injecting
color knowledge into the predicted representation. Such a
query strategy colorizes each pixel in a camera pose mul-
tiple times and incorporates various possible colors into our
color representation. As displayed in Fig. 3, though the sam-
pled image patches in one image are assigned with different
colors during each iteration (Fig. 3(c)), such seeming varia-
tion can in turn help to reach plausible and consistent results
by averaging over different colors (Fig. 3(b)).

Our query-based colorization can be conducted in a sim-
ple way. After sampling each batch of rays corresponding to
image patch P(u, s), we first render the monochromatic im-
age patch L̂P based on the luminance and density represen-
tation. Then we colorize this monochromatic image patch by
feeding it into the colorization module as follows:

BP = F(L̂P), (10)

where F(·) denotes the colorization module and BP denotes
the colorized image patch.

Histogram-guided purification. The query-based col-
orization has been able to produce plausible colorized sam-
ples across different views. However, due to incorrect un-
derstanding of the scene, the colorization module sometimes



yield outliers with different layout or illumination that may
undermine the colorization process, demonstrated in Fig. 4.

We propose to purify such outliers by histogram simi-
larity comparison. Before training, we sample patches with
s = 0.7 and generate base color images b. With large per-
ceptual field, b capture full semantics of the scene, so few
outliers occur. In the training epochs, we sample P with
s ∈ [0.3, 0.7] to colorize the details. After acquiring the
colorized patches BP , we calculate the histogram similar-
ity between BP and b:

d(BP) =

∑
j(∆H(b)⊙∆H(BP))√∑

j(∆H(b))2 ·
∑

j(∆H(BP))2
, (11)

where ⊙ denotes element-wise multiplication and ∆H(·) is
the normalized color histogram of a given image. j is his-
togram bin index.

As demonstrated in Fig. 2, by comparing ∆H(BP) with
∆H(b), the purification module can exclude outliers deviat-
ing from samples based on the selection scheme as follows:

H(BP) =

{
1, max(d(BP)) > T,
0, otherwise.

(12)

We empirically choose 5 base images with T = 0.80 in
our experiments, max(d(BP)) denotes the highest similar-
ity score with the base images. The histogram-guided purifi-
cation is formulated as YP = H(BP) ⊙ BP , where YP
denotes the purified color image patches. With ample plau-
sible color information, we further propose a color injection
module, aiming to produce vivid results by properly inject-
ing YP to the color representation ΘZ.

Classification-based color injection. The color injection
can be achieved by minimizing the photometric loss simi-
lar to Eq. (5), which transfers color information from the
colorization module to the predicted representation by mea-
suring the differences in their output. Despite the effective-
ness of photometric loss in reconstructing radiance fields,
it is incapable of producing vivid color (Zhang, Isola, and
Efros 2016), since the extensive color distribution inevitably
collapses into its mean value during the computation of pho-
tometric loss, which renders grayish and less vivid samples
from predicted representations.

We propose to preserve extensive color distribution by
considering color injection as a classification task. To fit
the classification objective, we first quantize the possible ab
space with grid size 10 and keep Q = 313 colors which are
in-gamut, denoted as ωq ∈ R2, where q ∈ {1, 2, . . . , Q}
is the index of quantized ab candidates. We change the out-
put channel of the color representation ΘZ(·) to Q channels
as probability scores of the possible color labels. For each
sampling patch P , we predict a probability distribution of
quantized ab colors, denoted as ẐP ∈ [0, 1]K×K×Q.

To supervise ẐP with YP , for each pixel p, we find 5
quantized colors closest to YP(p) using the nearest neigh-
bor algorithm, and use their distances as weights to generate
the soft label ZP(p), such soft-label operation is denoted as
S(·), i.e, ZP(p) = S(YP(p)).

Figure 5: One image sample for each scene in our dataset.
The names of the scenes are listed below the image.

We formulate the color classification loss as follows:

Lcl = −
∑

p∈P,q

(log(Ẑq
P(p))− log(Zq

P(p))Z
q
P(p). (13)

In the inference stage, we simply choose the color with the
largest possibility score from Q candidates, and take the ab
values of that color as our prediction:

ŶP(p) = ωq,where q = argmax
q

Ẑq
P(p), (14)

and Zq
P(p) is the probability score for ωq color. We

formulate the final results in RGB channel (denoted
as ĈP ) by concatenating ŶP with L̂P and convert-
ing the output from Lab to RGB color space: ĈP =

Lab2RGB(concat{L̂P , ŶP}).

Implementation details
We implement our pipeline using PyTorch. We integrate the
colorization modules based on their released implementa-
tion, and freeze their model weights along training. Follow-
ing the design in NeRF (Mildenhall et al. 2020), an eight-
layer MLP with 256 channels is used for points encoding,
and the luminance and color MLPs have two layers with
128 channels for directional encoding. Along each ray, we
sample 64 points to train a “coarse” network and 64 addi-
tional importance sampling points to train a “fine” network.
An image patch with K = 128 size is sampled in a batch.
Positional encoding is applied to input location and direction
similar to NeRF (Mildenhall et al. 2020). We optimize our
model for 30 epochs on one NVIDIA TITAN RTX GPU.

Experiments
Dataset. To conduct quantitative evaluation, we first em-
ploy synthetic monochromatic data. Two samples from
the conventional LLFF dataset (Mildenhall et al. 2019) are
employed (FLOWER and TREX). We additionally capture 8
scenes by following the instructions of LLFF (Mildenhall
et al. 2019), and each scene consists of 30 to 50 viewpoints.
A sample of each scene can be found in Fig. 5. During
the experiments, the samples in the above scenes are trans-
formed into their monochromatic counterparts, and their
original colorful version is used as the ground truth. To eval-
uate whether ColorNeRF is effective for real monochro-
matic data (without ground truth color) directly produced
by imaging devices. We further capture a scene using the
spike camera, a novel type of neuromorphic sensor record-
ing scene radiance as colorless neural spikes, which can be



Table 1: Quantitative comparison results on synthetic monochromatic data. ↑ (↓) means higher (lower) is better. The best
performances are highlighted in bold.

Category Method PSNR↑ SSIM↑ LPIPS↓ Colorful↑ ∆ Colorful↓
Comparison Vid (Lei and Chen 2019)+NeRF 17.78 0.63 0.31 12.88 23.59
Comparison ARF (Zhang et al. 2022) 17.82 0.54 0.37 36.33 N/A
Comparison CLIP-NeRF (Wang et al. 2022a) 17.76 0.76 0.31 30.92 12.18
Comparison CT2 (Weng et al. 2022)+NeRF 18.90 0.80 0.32 48.52 18.24

Ablation w/o histogram-guided purification 17.74 0.77 0.25 54.41 19.20
Ablation w/o classification-based color injection 19.22 0.81 0.22 49.28 12.82

Ours ColorNeRF 20.76 0.81 0.21 55.40 12.15

(a) (b) (c) (d) (e) (f)

Figure 6: Qualitative comparison with selected baselines.
In each scene, (a) is the monochormatic input and refer-
ence image (not used in training); (b-f) show two novel
synthesised views of the compared methods. (b): Vid (Lei
and Chen 2019) + NeRF; (c): ARF (Zhang et al. 2022);
(d): CLIP-NeRF (Wang et al. 2022a); (e): CT2 (Weng et al.
2022)+NeRF; (f) ColorNeRF (ours).

integrated to monochromatic images (Huang et al. 2022). In
addition, two multi-view scenes collected from old movies1

are employed to demonstrate our potential in rejuvenat-
ing old digital archives. All scenes are first processed by
COLMAP (Schönberger and Frahm 2016; Schönberger et al.
2016) for pose estimation. Synthetic data are used for quan-
titative and qualitative evaluations.

Baselines. We compare ColorNeRF against the follow-
ing baselines: 1) CLIP-NeRF (Wang et al. 2022a), a 3D
object manipulation method with color editing ability; 2)
ARF (Zhang et al. 2022), a style transfer NeRF method us-
ing a ground truth image as the reference style image; 3)
CT2 (Weng et al. 2022)+NeRF, results using the “colorize-
then-fuse” paradigm with the same colorization model
CT2 (Weng et al. 2022) used in our pipeline; 4) Vid (Lei and
Chen 2019)+NeRF, results using the “colorize-then-fuse”
paradigm with state-of-the-art automatic video colorization
work (Lei and Chen 2019). We do not compare with palette-
based color editing NeRFs (Tojo and Umetani 2022), since

1“Breathless” by Jean-Luc Godard, 1960 and “The Man Who
Sleeps” by Georges Perec, 1974

their palette extraction module (Tan, Echevarria, and Gin-
gold 2018; Tan, Lien, and Gingold 2017) could not extract
palette from monochromatic images.

Error metrics. We measure the performance of our col-
orized results following the conventionally used metrics in
colorization and implicit radiance fields. PSNR (Huynh-
Thu and Ghanbari 2008), SSIM (Wang et al. 2004) and
LPIPS (Zhang et al. 2018) are used to measure the image
quality of the results; Colorful Score (Hasler and Süsstrunk
2003) reflects the vividness of the colorized images. The
absolute colorfulness score difference (∆ Colorful) of the
ground truth images and predicted ones could also show how
close predictions are to ground truth in terms of vividness.

While pixel-level metrics, such as PSNR and SSIM, are
commonly utilized for quantitative evaluation, it has been
recognized that these metrics may not accurately reflect
the true performance of colorization techniques (Messaoud,
Forsyth, and Schwing 2018; Su, Chu, and Huang 2020; Wu
et al. 2021). Hence, in order to validate the performance of
the compared methods, a user study is conducted.

Quantitative experiments. The quantitative results on
synthetic monochromatic data are reported in Table 1.
Our model achieves better performance in all metrics.
CT2 (Weng et al. 2022)+NeRF has the second-best perfor-
mance, but their major drawbacks lie in the inconsistency
observed in Fig. 6. ARF (Zhang et al. 2022) utilizes a ground
truth image as the style image, hence it is unsuitable to com-
pare with other methods on colorfulness metrics.

Novel view synthesis. In Fig. 6, we show the novel view
synthesis results on our model and the compared base-
lines. It is clear that our model could yield the most plau-
sible and vivid colorization results. In Vid (Lei and Chen
2019)+NeRF, the video colorization module fails to colorize
vivid results, probably due to it is over-fitted on its training
dataset and has a major domain gap with real-world cus-
tom scenes. ARF (Zhang et al. 2022) focuses mainly on ex-
tracting the pattern in the style image, it could get artistic
results, but the results are not plausible since the geome-
try of the scenes are influenced by the style patterns. CLIP-
NeRF (Wang et al. 2022a) could not extract color informa-
tion from monochromatic images. Hence it yields less vivid
results. In CT2 (Weng et al. 2022)+NeRF, the results are not
plausible since the color is flickering when the view direc-
tion changes. We refer the readers to the project page for



(a) Input (b) w/o purification (c) w/ purification 

(d) Input (e) w/o color injection (f) w/ color injection

Figure 7: Ablation study. Comparison between (b) and (c)
shows the histogram-guided purification module could pu-
rify undesired color; comparison between (e) and (f) ex-
hibits the classification-based color injection module pro-
duces more vivid outputs.

Table 2: User study results. Higher score means better per-
formance, and the best scores are highlighted in bold. Our
model exhibits superior performance in terms of plausibil-
ity and vividness compared to other methods. (a): Vid (Lei
and Chen 2019)+NeRF; (b): ARF (Zhang et al. 2022); (c):
CLIP-NeRF (Wang et al. 2022a); (d): CT2 (Weng et al.
2022)+NeRF; (e): ColorNeRF (ours).

Method (a) (b) (c) (d) (e)
Plausibility 1.70 2.23 3.10 3.25 4.26
Vividness 3.00 2.35 2.55 3.40 4.67

more comprehensive results in our dataset with higher reso-
lution and more synthesised views.

Ablation study. The quantitative and qualitative ablation
results are presented in Table 1 and Fig. 7, respectively. The
absence of the histogram-based purification module in quan-
titative experiments results in a high Colorful score, but the
∆ Colorful score is also high, indicating the presence of un-
desired colors, such as the red area in Fig. 7(b). On the other
hand, the omission of the classification-based color injec-
tion in the ablation experiments leads to a decrease in the
Colorful score, indicating a less vivid performance, e.g., the
yellowish leaves in Fig. 7(e).

User study. In addition to quantitative and qualitative
comparisons, we conduct user study experiments to assess
whether our results are preferred by human observers. The
experiment set is composed of the 10 scenes in synthetic
monochromatic data. For each scene, we provide 3 synthe-
sised novel views colorized by 5 different methods: Vid (Lei
and Chen 2019)+NeRF, ARF (Zhang et al. 2022), CLIP-
NeRF (Wang et al. 2022a), CT2 (Weng et al. 2022)+NeRF
and Ours. Participants are asked to score 1-5 (higher means
better performance) on the results in terms of plausibility
and vividness. The order of displayed methods is shuffled
in each scene. Each experiment is completed by 50 partici-

(a) (b) (c)

Figure 8: Qualitative comparison with Vid (Lei and Chen
2019) + NeRF on two old movie clips. (a): input; (b):
Vid (Lei and Chen 2019) + NeRF; (c): ColorNeRF (ours).
Please refer to the project page for animation results.

Figure 9: Three novel views of ColorNeRF using color in-
formation from L-CoDer (Chang et al. 2022) on BALLOON
scene are shown. The text guidance used in L-CoDer is
“Blue balloon on white wall”.

pants. Results in Table 2 show our method outperforms other
methods in terms of plausibility and vividness.

Results on real data. We show the results of our model on
real monochromatic data in Fig. 8, which also demonstrate
our model’s applications on creating colors for rejuvenating
old digital archives in the form of radiance fields.

Conclusions
In this paper, we introduce ColorNeRF, a novel approach ca-
pable of generating plausible and vivid radiance fields from
monochromatic images. Our approach employs a represen-
tation prediction framework, incorporating a query-based
colorization module, a histogram-guided purification mod-
ule, and a classification-based color injection module, to en-
sure the plausibility and vividness of the results. Extensive
experiments are conducted to validate the advantages and
broad applications of our model.

Limitations and future work. Theoretically, an arbi-
trary colorization network could be incorporated with Col-
orNeRF. In Fig. 9, we show the novel views generated by
ColorNeRF using language-guided colorization model L-
CoDer (Chang et al. 2022). Although our model produces
plausible and vivid outcomes, there are some undesired ar-
tifacts in the results. This is resulted from the inferior per-
formance of L-CoDer (Chang et al. 2022) under cases with
uncertain background colors, which also demonstrates that
the effectiveness of ColorNeRF is contingent upon the per-
formance of the external colorization module. The advance-
ment of 2D colorization models is expected to mitigate this
issue by generating more plausible results.
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