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Figure S1: The quantized ab space.

Quantization process

We propose a classification-based color injection module to
inject color information into the color representation and
preserve the vividness of the results. Inspired by previous
methods (Zhang, Isola, and Efros 2016), we use a classifi-
cation objective during training. A fundamental process for
such an operation is to quantize the color space, so we first
quantize the possible ab space into Q = 313 discrete col-
ors with gird size 10, as visualized in Fig. S1. Note that in
all possible 22 x 22 = 484 colors, there are only 313 valid
colors. As described in the main paper, we use a soft-label
operation S(+) to convert Yp to soft label Zp. This visual-
ization also demonstrates that similar colors are adjacent in
this quantized color space, hence we could use the nearest
neighbor algorithm to find colors closest to Y (p).

Complete results

We display the complete qualitative experimental results
(corresponding to Fig. 6 of the main paper) on our syn-
thetic monochromatic data (all ten datasets shown in Fig. 5
of the main paper) in our supplementary video. In this video,
we show a monochromatic input reference, our results, and
the baselines described in the main paper: 1) Vid (Lei and

Chen 2019)+NeRF; 2) ARF (Zhang et al. 2022); 3) CLIP-
NeRF (Wang et al. 2022); 4) CT? (Weng et al. 2022)+NeRF.

The video also contains our results on real monochro-
matic data (corresponding to Fig. 9 of the main paper),
demonstrating our possible application on creating colors
for neuromorphic sensors such as the spike camera (Huang
et al. 2022) or rejuvenating old digital archives in the form
of radiance fields.

In the main paper, we present animated results to bet-
ter demonstrate the multi-view results of our model and the
compared baselines. We recommend that readers to further
check our supplementary video for animated results with
higher resolution and frame rate.

Implementation details

We build our framework based on an unofficial NeRF im-
plementation'. Following the settings in (Mildenhall et al.
2020), we use 63-dimension positional encoding for points
position and 27-dimension positional encoding for view di-
rection. As described in the main paper, an eight-layer MLP
with 256 channels is used for points encoding, and an addi-
tional linear layer is used to produce density o. The lumi-
nance representation and color representation have separate
directional encoding MLPs, which take the concatenation of
points embedding and encoded view direction as input and
produce a 128-dimensional view embedding. Lastly, an out-
put layer is employed to produce the predicted color with a
specific dimension (1 for luminance representation and 313
for color representation). All MLP layers use ReLLU (Agarap
2018) activation function except the output layers, which use
Sigmoid (Han and Moraga 1995) activation function. We use
the author-provided code and weights in the external col-
orization module CT? (Weng et al. 2022). The parameters
of the colorization module are fixed throughout training.
Regarding the implementation of the compared base-
lines, for ARF (Zhang et al. 2022), we follow their origi-
nal paradigm to first construct a monochromatic NeRF in
Plenoctrees (Yu et al. 2021), then we use a ground truth
color image as style image to colorize the scene. In CLIP-
NeRF (Wang et al. 2022), we use the author-provided code
for color editing, we use prompts that directly describe the
scene colors (e.g., in FLOWER scene, the prompt is “red

"https://github.com/kweal23/nerf_pl



flower in green leaves™.). In Vid (Lei and Chen 2019)+NeRF
and CT? (Weng et al. 2022)+NeRF, we use the “colorize-
then-fuse” paradigm, i.e, we first colorize all the input im-
ages and use these colorized images for vanilla NeRF con-
struction.

Training details

In the training process, we first construct the luminance
and density representation without patch sampling for 30
epochs, we then fix the parameters in points encoding and
MLPs used to predict o and [. In the color representation
prediction process, as described in the “Proposed Method”
section of the main paper, we employ the patch sampling
scheme similar to GRAF (Schwarz et al. 2020). In every
epoch, we first query the luminance and density represen-
tation for the monochromatic image patch. We then use
our classification-based color injection module to supervise
our color representation. We also apply the re-balance loss
weights to balance the loss based on color rarity, following
prior arts (Weng et al. 2022; Zhang, Isola, and Efros 2016).

About error metrics

We choose error metrics commonly used in image coloriza-
tion and NeRFs to measure the performance of our model.
Fréchet Inception Score (FID) (Heusel et al. 2017) is also
used in colorization, measuring the similarity between two
Gaussians (the ground truth and the predicted images). How-
ever, the test set of NeRFs only contains several images,
which makes FID biased and unsuitable for measuring per-
formance.
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